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Introduction 

 When farmers are interested in implementing new practices on their farms, it is 
common to test the management change using on-farm strip trials. This involves one strip 
receiving a treatment while the neighbouring strip receiving another treatment or control. 
This allows the grower to evaluate which is the best practice for their operation and is the 
basis of the ONFARM program of the OSCIA. While this can be useful to improve decision 
making, the challenge with this method is that spatial variability across the farm may 
confound the trial results. In other words, a farmer can’t be sure if the yield diƯerence they 
observed was due to the treatment or the diƯerences in soil types and productive capacity 
between the two strips. 

 Traditionally, this problem of spatial variation confounding results has been 
addressed by randomizing and replicating small plot experiments at research stations. 
While this improves the reliability of trial results, it is time consuming, expensive and limits 
the ability of farmers to directly test products and practices they are interested in on their 
own farms.  

 The introduction of combine yield monitors has increased the interest among 
farmers in conducting on-farm trials since these sensors measure yield in thousands of 
points across a farm. There are two main challenges in using this data optimally for the 
analysis of on-fam strip trials. The first is that each measurement of yield is not 
independent (positive spatial autocorrelation) and the second is the lack of randomization 
in strip trials, which results in confounding with spatial variability. 

 To address these issues, Caleb Niemeyer and his PhD advisor, Dr. John Sulik have 
been developing statistical methods to account for the lack of randomization and 
replication in yield monitor strip trial data.  

 

Objectives 

 This report aims to demonstrate a new method which can be used to account for 
the influence of spatial variability on response to best management practices. This report 
will analyze yield monitor data from the ONFARM program of the OSCIA to and evaluate the 
statistical significance of treatment eƯects in these unreplicated and non-randomized strip 
trials. 

  



 

Methods 

 Propensity score matching is an observational statistical technique commonly used 
in fields such as medicine or economics where randomization and replication is not 
feasible or ethical. Since these fields of research have needed to develop techniques to 
overcome challenges with traditional experimental designs similar to the issues faced in 
analyzing on-farm trials, these techniques may be a good fit to address these same 
challenges with agricultural data.  

 The propensity score matching method we have adapted aims to balance 
distribution of confounding variables between the treated and control strips. For example, 
if one strip has a higher average elevation than another, this method will correct for the 
diƯerence in elevation between the strips, helping to ensure that the yield response 
observed is not due to elevation, but rather the treatment of interest. In reality, there are 
many more potential confounders than just elevation and this method is capable of 
correcting for multiple at the same time. In this analysis, the confounders selected were 
elevation as measured by the Ontario LIDAR data, terrain derivatives calculated from the 
digital elevation model, past yield patterns and historical imagery obtained from satellites. 
All of these layers can be included to correct for their possible confounding influence on 
the experiment. Additionally, a spatial model is used to address the presence of spatial 
autocorrelation in yield data. 

 After the propensity score matching method is completed, the two strips can be 
accurately compared and a test of statistical significance can be conducted to determine if 
a treatment yield diƯered significantly from another treatment. Cover crop and organic 
amendment treatments were applied in five sites as part of the ONFARM program of the 
OSCIA. Yield monitor data were collected in the years of 2021, 2022, and 2023. When 
multiple site-years of data are collected, the results of these trials can be combined using 
simple meta analysis techniques to estimate the overall eƯect of a treatment, rather than 
just the eƯect on one farm.  

  



Results - Tables and Figures 

Table 1. Yield response (bu/ac), associated statistics and 95% Confidence intervals of 
yield response to various best management practices. Rows with P values significant 
at > 0.05 are italicized. 

Farm Treatment Year 
Yield 
Response p value 

95% CI 
Low 

95% CI 
High 

Yield 
Response 
(%) 

Site 3 control vs organics 2021 -0.81 0.6862 -4.78 3.15 -0.65 

Site 3 control vs organics 2022 -1.14 0.1103 -2.54 0.26 -1.94 

Site 3 control vs organics 2023 8.02 0.1406 -2.64 18.68 3.18 

Site 3 control vs cover 2021 -0.51 0.8417 -5.56 4.53 -0.40 

Site 3 control vs cover 2022 0.17 0.8989 -2.39 2.72 0.28 

Site 3 control vs cover 2023 6.12 0.0018 2.26 9.99 2.39 

Site 3 organics vs combo 2021 -0.31 0.7729 -2.39 1.77 -0.24 

Site 3 organics vs combo 2022 -1.02 0.3495 -3.16 1.11 -1.74 

Site 3 organics vs combo 2023 1.37 0.6096 -3.88 6.61 0.53 

Site 7 east control vs cover 2021 -0.36 0.7576 -2.67 1.94 -0.17 

Site 7 east control vs cover 2022 -0.67 0.2331 -1.7 0.42 -1.06 

Site 7 east control vs cover 2023 9.40 0.0003 6.72 11.99 7.79 

Site 7 west control vs cover 2021 -0.39 0.1002 -0.49 0.12 -4.65 

Site 7 west control vs cover 2022 0.93 0.0974 -0.16 2.02 1.66 

Site 7 west control vs cover 2023 6.07 0.0084 1.54 10.59 5.40 

Site 12 control vs organics 2023 1.02 0.218 -0.61 2.66 1.85 

Site 20 control vs cover 2021 -0.12 0.9480 -3.84 3.60 -0.27 

Site 20 control vs cover 2022 7.45 0.3506 -8.19 23.09 5.72 

Site 20 control vs cover 2023 8.12 0.0110 1.85 14.37 29.3 

Site 20 control vs combo 2021 3.39 0.0216 0.50 6.29 7.04 

Site 20 control vs combo 2022 8.45 0.0000 4.46 12.43 6.17 

Site 20 control vs combo 2023 5.03 0.0000 3.47 6.58 13.16 

Site 11 control vs organics 2022 0.07 0.8421 -0.65 0.80 0.11 

Site 11 control vs organics 2023 -0.09 0.8523 -1.12 0.93 -0.10 

Site 11 combo vs cover 2022 0.34 0.4089 -0.47 1.15 0.51 

Site 11 combo vs cover 2023 0.36 0.7608 -1.94 2.66 0.35 

Site 11 combo vs organics 2022 2.41 0.0000 1.74 3.07 3.56 

Site 11 combo vs organics 2023 2.82 0.0001 1.25 4.40 2.75 



 

 

 

Figure 1. Treatment eƯects of cover crop treatments from two fields at Site 7. The 
central dot for each line graph represents the yield response (bu/ac) observed from 
the BMP, while the range of each line shows its 95% confidence interval. The overall 
eƯect of these treatments is shown in the bottom line as the RE model. Because each 
site’s treatment strips vary in size, the contribution of each treatment’s to the overall 
model is visualized by the size of it’s yield response square. 

 

Figure 2. Treatment eƯects of cover crop treatments across all years and farms. The 
combined overall eƯect is shown in the RE model bar at the bottom of the chart. 
Treatment eƯect estimates are displayed as squares of various sizes depending on 
their contribution to the overall eƯect estimation due to sample variability diƯerences 
between sites. 95% confidence intervals are displayed as horizontal bars on either 
side of the eƯect estimate. 

 

 



 

Figure 3. Treatment eƯects of organic amendment treatments across all years and 
farms. The combined overall eƯect is shown in the RE model bar at the bottom of the 
chart. Treatment eƯect estimates are displayed as squares of various sizes depending 
on their contribution to the overall eƯect estimation due to sample variability 
diƯerences between sites. 95% confidence intervals are displayed as horizontal bars 
on either side of the eƯect estimate. 

 

Table 2. Treatment eƯect of organic amendments at Site 12 by soil type zone in 2023 

Soil Type Yield 
Response p value 95% CI Low 95% CI High 

Fox -1.097 0.6448 -5.76 3.57 
Degraded Fox -0.484 0.8427 -5.27 4.30 
Depositional 
Fox 

3.650 0.2768 -2.93 10.23 

Hillsburgh 0.918 0.0054 0.272 1.56 
Tuscola 0.712 0.6652 -2.51 3.94 

 

Results and Discussion 

At Site 3, there were no statistically significant treatments in 2021 and 2022. 
However, in 2023, yields in the cover crop treatment were higher than the control. 
Additionally, there was slight evidence (p=0.1406) in 2023 that the organic amendment 
treatment did increase yields relative to a control. There was no evidence to suggest that a 
combination of cover crops and organic amendments increased yields relative to organic 
amendments alone in any of the years studied.  

At Site 7 there were two replications of cover crop treatments. Similarly to Site 3, 
there was not strong evidence that organic amendment had an eƯect on yield in 2021 and 



2022, though both strips responded positively in 2023. Across those two strips, cover crops 
increased yield by 7.5 bu/ac with a 95% Confidence interval of 4.1 to 10.9 bu/ac (Figure 1).   

 At Site 20, the comparison between control and cover crop was non significant in 
2021 and 2022 but was significant in 2023, similar to what was found at Sites 3 and 7. In the 
comparison between a control and a combination of both cover crops and organic 
amendment, every year studied saw a slight increase in yield. 

 At Site 11, the comparisons between the control and organic amendments were not 
significant. Additionally, the comparisons between a combination of cover crops and 
organic amendments and just cover crops was nonsignificant. However, the comparison 
between a combination of cover crops and organic amendments and just organic 
amendments was significant in both 2022 and 2023. This treatment eƯect size was small 
however.  

At Site 12, there were no significant diƯerences between treatments in any of the 
years studied. However, at this farm there is a separate digital soil type map available, 
provided by the precision agriculture business of Woodrill called Groundwork. These strips 
crossed over five unique soil types which included a Fox sandy loam (medium sands, 
rapidly drained), degraded Fox sandy loam, depositional Fox sandy loam, Hillsburgh sandy 
loam (fine sands, well drained) and Tuscola silt loam (very fine sands and silts, imperfectly 
drained). The propensity score matching method used allows for analysis of treatment 
eƯects by zone, in this case, soil type. In this analysis, all soil types except for the 
Hillsburgh sandy loam did not have strong evidence to suggest a response to organic 
amendments (Table 2). The Hillsbugh sandy loam did have a small but statistically 
significant positive yield response. While this suggests the Hillsburgh has a higher 
response to organic amendments, it should be noted that the power of the test for each soil 
type varies based on the amount of any particular soil type in the strip. For example, there 
was very little depositional fox in the strips (less than 5% of the area of the experiment) and 
as a result the 95% confidence interval is quite large. However, since well drained soils 
such as the Hillsburgh have lower organic matter, this result does suggest that these well 
drained low organic matter (OM) soils may respond more to organic amendments than 
soils with more water and more OM such as the Tuscola silt loam. 

While individual farms, and soil types with farms, may have varying responses to 
best management practices, farmers and researchers may also be interested in 
determining overall treatment eƯects across several farms. This may help to inform 
generalized recommendations across a geographic area. To accomplish this, all available 
comparisons between a cover crop and control (Figure 2) and an organic amendment and a 
control (Figure 3) can be included in a simple meta analysis. This approach can determine 



what the best estimate of the treatment eƯect and 95% confidence intervals are. When 
looking at all available cover crop data, the average treatment eƯect was 3.38 bu/ac with a 
95% confidence interval of 0.87 bu/ac to 5.90 bu/ac (Figure 2). This indicates that cover 
crops likely cause a small but positive change in yield. For organic amendments, the 
treatment eƯect estimate was 1.05 bu/ac with a 95% confidence interval of -1.30 bu/ac to 
3.40bu/ac. This indicates there is insuƯicient evidence to conclude that organic 
amendment application has an eƯect on yield, either positive or negative. However, there is 
a slight numerical trend towards higher yields with organic amendment application. 

Limitations 

 This is a new and experimental method for determining the statistical significance of 
treatment eƯects in unreplicated strip trials. When the assumptions of the models used 
are met, the results will be accurate, but violations of these assumptions may introduce 
uncertainty. These assumptions include the standard assumptions for most common 
statistical test which include independence of observations, normally distributed data and 
equal variances. Since yield data is spatially autocorrelated, observations are not 
independent, resulting in the need for a spatial model which was used in this study. This 
spatial model reduced spatial autocorrelation in the resulting residuals, indicating this 
assumption violation was addressed. 

One of the important assumptions unique to the methods used in this study is that 
propensity score matching can create balance of confounders between treatment groups. 
The evaluation of covariate balance was not shown in this report but is important. While 
this method provides an improved analytical method compared to simply looking at strip 
average yields, the causal inferences suggested in this report are not as strong as the “gold 
standard” of randomized and replicated trials.  

Summary 

 When combining results across several sites and years, there is a slight increase in 
yield due to cover crops that is statistically significant. There is not enough evidence to 
suggest that organic amendment application does or does not influence yields. However, 
there are patterns within each site that may be masked by an overall analysis. At several 
sites, the benefits of best management practices were not able to be seen for 2 years after 
the treatments were applied. This suggests the best management practices should be 
considered a part of a long-term soil management strategy, rather than providing a short-
term increase to crop yields. Additionally, farmers may need keep reasonable expectations 
of short-term return on investment when implementing these practices.  

  


